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ey
wherein

& — Dimensionless damping coefficient

ey, -~ Frequency in radls of natural vibrations of the setup without damping
@ — Frequency of natural vibrations with damping, frequency of

freely decaying vibrations of the setup with damping

For a setup having one degree of freedom, described with a formula:

my oy +hy =0

There are known relations

The formula may be put down in a form of:

P 2T+ oy y =0
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Fig. 3
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By executing a Fourier transform at point £ for a function:
v(t)= Aexp(—AT ) sin{w i+ ¢ )

There is obtained a relation
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[Flexp(~2a) sin(@,t+ 9 )],

Fig. 12
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Vit)= dexp{—Cw,t)sinf w,t) (14)

wherein 4 — Vibrations amplitude
&~ Viscous damping coefficient

w,— Frequency of natural vibrations, of the setup, without damping
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Fig. 17
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1 BlockEnd = 1

2 BlockSize = 2

3

4 Do While BlockSize <= NumSamples
5 m = NumSamples / BlockSize

&

7 T =0

8 Do While I < NumSamples

9 mb = 0

10 §om T

11 For n = 0 To RBlockEnd - 1

12 K = j + BlockEnd

13 TR = cs{mb) * RealCut(K) -~ sn{mbk) * ImagOut (K)
14 TT = sn(mb) * RealOut (K) + cs(mb) * ImagOut (K)
15 ReleuL(K) = RealOut (j) — TR
1% ImagQut (K) = ImagCut(j} - TTI
17 RealCut (j) = RealCut(j) + TR
18 ImagOut (j) = ImagCut(j} + TI
19 mh = mb + m

20 7 =3 + 1

21 Next

22

23 I = I + BlockSirze

24 Loop

25

26 BlockEnd = BlockSize
27 BlockSize = BlockSize * 2
28 Loop

wherein

NumSamples -

BlockSize -

m -

mb -

sn{mb} — value of function sin{mb) retrieved from previously calculated table
¢s(mb) - value of function cos{mb) refrieved from previously calculated table
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1

METHOD FOR IN-FLIGHT ASSESSMENT OF
FREEDOM FROM FLUTTER OF AN
AIRPLANE

The present invention relates to a method for in-flight
assessment of freedom from flutter of an airplane.

Flutter vibrations are self excited aeroelastic vibrations of
an airplane structure during flight. At certain flight velocities,
aerodynamic forces related to vibrating movement, for
example of a wing, may, for particular mass-stiffness prop-
erties of the construction, cause development of vibrations,
for example bending-torsional forms of vibrations, leading to
the destruction of the airplane.

Aviation regulations require to run in-flight flutter evalua-
tions for new airplanes in order to document that the airplane
is free from flutter. Presently, flutter evaluations are per-
formed in such a way that the data are gathered from vibration
sensors located on parts of the airplane structure during test
flights and subsequently, after the flight is finished, the results
of the data analysis are obtained. The known methods do not
allow for in-flight assessment of freedom from flutter. Such a
process is time-consuming and expensive, since it allows
drawing conclusions only after the flight is finished and run-
ning evaluations for higher airplane velocities only during the
next test flight.

Evaluation of flutter in flight should prove and document
that the airplane is free from flutter within the whole range of
planned velocities and altitudes. This is proven by providing
damping coefficients values for the airplane structure vibra-
tion modes which are relevant for flutter.

An airplane approved for service must be resilient to flutter.
It is assumed that the airplane is appropriately constructed in
terms of flutter if the damping coefficients for the relevant
vibration modes are higher than zero and not lower than
£=0.015. This value means physically that excited, self-at-
tenuating vibrations, for example of a wing, should attenuate
by about 10% amplitude decrease for each period of vibration
in the whole range of approved flight conditions.

The known methods for evaluation of flutter damping coet-
ficients involve artificial excitation of vibrations and post-
flight analysis of these vibrations for flights with consecu-
tively increasing velocities. Impulse, harmonic or stochastic
excitations are used. This requires mounting of measurement
apparatus on the airplane, increases evaluation costs and
lengthens the evaluation time.

Flutter vibrations have a character of non-stationary sig-
nals, i.e. their spectrum properties vary in time—the varia-
tions may concern amplitude, frequency and phase. The
variation in time of the spectrum vibration parameters may be
self excited or artificially excited.

One of the methods for in-flight evaluation of flutter of an
airplane involves vibrations of the airplane structure which
are impulse-excited by using rocket actuators. Impulse
responses are analyzed in order to determine the mode shapes
of vibration and their damping coefficients. Impulse excita-
tion is understood as excitation with a force of 200 to 2000 N
during 10to 50 milliseconds. An exemplary impulse response
of an airplane in flight is shown in FIG. 1. The impulse
responses are measured with vibration sensors.

Typical methods allow appropriate determination of aver-
age spectrum properties of a signal for relatively long periods
of time. Fast Fourier Transform is commonly used for this
purpose. However, typical Fast Fourier Transform algorithms
are suitable for analysis of long segments of a signal and for
high frequencies of the order of thousands of Hz. Therefore,
they are not suitable for typical airplane flutter vibrations,
which have a frequency of up to several tens of Hz. Hence,

10

15

2

there exists a need for improving the method of Fast Fourier
Transform calculation in order to achieve improved resolu-
tion in lower ranges of frequencies.

Moreover, it has been theoretically proved that the impulse
response of a monitored object may be substituted with a self
correlation function (also called an autocorrelation) of a sto-
chastically excited signal. Assuming that the vibrations of
wings or of a tail-plane of an airplane during flight have the
properties of stochastically excited vibrations, the damping
coefficients may be estimated based on analysis of estimates
of the self correlation function (and the estimate of the auto-
correlation function). The following publications are related
to this topic:

Uhl T., Lisowski W., Kurowski P.: In-Operation Modal
Analysis and its Applications. Katedra Robotyki i Dynamiki
Maszyn. Akademia Gorniczo-Hutnicza w Krakowie. Krakow
2001.

Hermans L., Van der Auweraer H.: On the Use of Auto-and
Cross-correlation Functions to Extract Modal Parameters

20 from Output-only Data. In Proceedings of the 6” Interna-
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30

35

40

45

50

55
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65

tional Conference on Recent Advances in Structural
Dynamic. Work in progress paper, University of Southamp-
ton, UK, 1997.

There are known methods for calculating the estimate of
autocorrelation for stationary signals. However, these meth-
ods change the damping coefficients values of the source
signal of actual vibrations.

There are commonly used equations for calculating corre-
lation function for stationary, ergodic, stochastic processes
with the use of a single run of the stochastic process suffi-
ciently extended in time. A self correlation function of a
process y(t) can be calculated using equation (1) shown in
FIG. 2.

A stationary process has a constant average value m, in
time and a constant variance in time. A stationary process is
ergodic when the time averages are equal to the ensemble
averages over the range of the stochastic process realization.

However, the above equations are applicable to an infi-
nitely long vibration signal. A self correlation function of
such signal preserves the frequencies and modal damping
coefficients of the evaluated object.

However, during in-flight measurements, the measured
segments of vibrations are always finite. The estimates of
autocorrelation function of such signals change their damp-
ing coefficients. In such cases the existing estimates of auto-
correlation function introduce methodical errors, unequivo-
cally related to individual estimates. The analysis of actual
vibrations signals further introduces errors resulting from
measurement errors and from the fact that in-flight vibrations
excitements are not exactly a stationary white noise.

Itis the object of the present invention to provide a method
for assessment of freedom from flutter of an airplane with a
use of such algorithms that allow real-time evaluation in
flight.

The object of the invention is a computer implemented
method of in-flight assessment of freedom from flutter of an
airplane, involving analyzing the airplane structure vibrations
based on signals indicated by sensors located on the airplane
structure. The computations are performed in real-time based
on current measurement data collected from the sensors,
wherein for measurement data from individual sensors there
are determined mode shapes of vibrations by determining for
each mode shape a natural frequency (f), a damping coeffi-
cient (C), a phase (¢) and an amplitude (A) by using a method
of least squares of errors of time signals, wherein the rel-
evancy of the modes of vibrations is determined by subtract-
ing from the vibrations signal the particular mode of vibra-
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tions and calculating the value of decrease of the rest sum of
squares. The airplane structure vibrations are evaluated by
analyzing impulse responses or estimates of autocorrelation
function for operational vibrations signals, wherein the auto-
correlation function R, (1) is computed by multiplying a con-
stant number of samples, preferably N/2, of the vibrations
signal (y,,) by successive segments of the vibrations signal
(v,), each segment having a size N, and by summing the
results according to the equation:

Nj2
Ryy(l) = N_/ZZ Yn* Yn+t
n=1

n=1,2,3 .. .N
[=0,1,2,... \Nj2

in order to obtain an autocorrelation function R, (1) having
the length of a half of the evaluated segment of vibrations
while maintaining the values of the damping coefficients of
non-stationary signals having a finite duration.

Preferably, the autocorrelation function R, (1) is calculated
with a use of Fast Fourier Transform according to the equa-
tion:

1
—FFT ' [Yyp(j)] for k=0,1,2,3,... ,N/2-1

Ryyk) = N2
Yyyp() = Y(DYP())
j=1,2,3,... .N
Y(j) = FFT[y(n)]
YP(j) = FFT[yp(n)]
ypm)=ymn) forn=1,2,3,... ,N/2
ypm)=0forn=N/2+1,... ,N
wherein n=1, 2, 3, . . ., N N=2, Wherein i is a natural
number

Preferably, the sampled segment of the signal having the
length of N samples is zero-padded in order to obtain an
output sequence having the length of N =2, whereini is a
natural number and the Fast Fourier Transform is calculated
for the output sequence.

Preferably, the Fast Fourier Transform is calculated by
using tables of values of sine and cosine functions for angles
dependent on the number of samples and on the sampling
frequency, prepared after the start of the system.

Preferably, an image visualizing the vibrations measured
by the sensors is generated, the image comprising an image of
the airplane structure and its deviations resulting from the
vibrations, whereas the deviations having parameters above
threshold values are marked with a color different than the
color of the deviations having parameters below the threshold
values.

Preferably, the vibrations are visualized by using a method
involving calculation of a phase shift or a method involving
calculation of a movement phase at specified points in time.

The object of the invention is also a measurement system
for in-flight assessment of freedom from flutter of an airplane
equipped with vibrations sensors located on the airplane
structure, wherein the system comprises signal processing
circuits for performing the method according to the invention.
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The object of the invention is also a computer program
comprising a program code for performing all of the steps of
the method according to the invention when the program is
run on a computer.

The solution according to the present invention involves a
data processing method, which allows evaluation of aeroelas-
tic properties of an airplane during in-flight flutter assess-
ment. This increases the safety of flutter tests during flight and
decreases the time necessary to run the tests, which signifi-
cantly decreases the costs of production of an airplane. The
analyses are run within a second after measurements of vibra-
tions covering a period of one or a few seconds, thereby
facilitating quick responsiveness in the case of detection of
any tendency to dangerous flutter vibrations.

Mode shapes of vibrations are determined in an efficient
way by subtracting predefined modes of vibrations from the
evaluated signal and verifying whether after the subtraction
the rest sum of squares has decreased by a predefined thresh-
old value.

The disclosed method for calculating the self-correlation
function, based on finite segments of vibrations, preserves the
natural properties of the modal modes of vibrations of the
evaluated signal and preserves the values of damping coeffi-
cients and natural frequencies of the evaluated object. The
calculations can be made more quickly by means of a Fast
Fourier Transform.

The presented method for calculating the autocorrelation
function is suitable for analysis of vibrations that are increas-
ing and self-attenuating, or analysis of normal vibrations
during exploitation of the airplane conducted for analysis of
the current dynamic properties of the airplane.

The invention is shown by means of an exemplary embodi-
ment on a drawing in which:

FIG. 1 presents an exemplary impulse response of an air-
plane structure in flight;

FIG. 2 presents an equation for determining the self-cor-
relation function of the process y(t);

FIG. 3 presents a mathematical model §(t) for determining
a finite sum of natural vibration modes;

FIG. 4 presents an equation for calculating the rest sum of
squares (RSS) and its derivatives;

FIG. 5 presents continuation calculation of derivative of
the RSS;

FIG. 6 presents graphically the equation (9) for two modes;

FIG. 7 presents the equations (9) in a frequency domain;

FIG. 8 presents a transform of a time signal comprising two
mode shapes of vibrations;

FIG. 9 presents a sequence of transformations of a signal
y(t) in order to obtain the phase ¢ equation;

FIG. 10 presents one form of the y(t) function;

FIG. 11 presents calculation of the amplitude A at the
initial point of analysis window;

FIG. 12 presents equations for calculating the amplitude A;

FIGS. 13 A and 13B present examples of calculation of the
self-correlation function for the function y(t);

FIG. 14 presents an exemplary plot of an attenuating signal
and its autocorrelation;

FIG. 15 presents estimate of the self-correlation function in
the form of a sum;

FIG. 16 present estimate of the self-correlation function in
form of an integral;

FIG. 17-20 present equations related to the impulse
response;

FIG. 21 presents an analytical equation of a self-correlation
function;

FIG. 22-30 present an example of calculating the self-
correlation function and the calculation results;
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FIG. 31-32 present computations of vibrations damping
coefficient C;

FIG. 33 presents an equation for calculating self-correla-
tion function R (k) using FFT method for realization of the
stochastic process y(n);

FIG. 34 presents the most common equation for calculating
the discrete Fourier transform;

FIG. 35 presents an algorithm for calculating the Fast Fou-
rier Transform;

FIG. 36 presents an exemplary visualization of operational
modes of vibrations;

FIG. 37 presents an example of a computer system for
carrying out the method according to the present invention.

DETERMINING MODE SHAPES OF
VIBRATIONS AND THEIR DAMPING
COEFFICIENTS

The signals measured by vibrations sensors are analyzed in
order to determine the mode shapes of vibrations and their
damping coefficients.

Assuming that an object is linear, for small deviations from
a balanced state, each freely vibrating movement of the air-
plane structure is composed of a sum of movements related to
mode shapes of vibrations. For airplanes for which the vibra-
tions amplitude of the end of the wing, after impulse excite-
ment, does not exceed for example 2 mm, the assumption of
linearity is justified. It is assumed that a registered free move-
ment of attenuating vibrations, after an impulse excitement,
may be described with a mathematical model $(t) defining a
finite sum of natural modes, as shown in FIG. 3.

The relative damping coefficient C is the main value, which
has been used as a measure of resilience to flutter vibrations.

The real object has an infinite number of modes of vibra-
tions, whereas the registered result of measurement has a
finite number of modes due to the constraints of the measur-
ing circuit. Numerical calculations also reduce the number of
analyzed modes due to the discrete nature of measurements.

The initial assumption of the linearity ofthe object does not
preclude the possibility of detecting nonlinearity, by e.g.
determining the relationship between e.g. the damping T and
the value of the amplitude of vibrations, by measuring the
temporary properties of the object while the vibrations
attenuate after impulse excitement.

Equations §(t) of FIG. 3 are finite Fourier series, the modes
of which are the shapes of natural vibrations of the airplane.

The problem of identification of the parameters of the
model of the object can be solved by defining the values of:
amplitudes A, frequencies ®,,,,, damping coefficients { and
phase angles ¢, of individual mode shapes of vibrations in the
analyzed registers of attenuating vibrations.

Having a formulated mathematical model ¥(t) of the physi-
cal setup under evaluation and the actual time plots y(t), the
parameters of mode shapes of vibrations may be determined
from the rule of minimization of rest sum of squares (RSS),
represented by the equation shown in FIG. 4.

By comparing to zero the derivatives of this sum versus all
parameters sought, a set of non-linear equations is obtained.
For P mode shapes, a set of 4P equations is obtained. It is
however not necessary to calculate natural frequencies from
such an extended set of equations. For determining the natural
frequencies, Fourier transforms may be used.

The method for determining optimal parameters of the
model y(t) can be based on a modified method for searching
for optimal coefficients of Fourier series for a given function

yO.
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For a Fourier series, a set of harmonic functions is assumed
and optimal values of coefficients a, and b, are sought.

Having a set of modes of vibrations, the optimal ampli-
tudes of these modes of vibrations can be found. The only
difference is that a time-variable amplitude is present here. In
the further part of FIG. 5 it is shown how to calculate a
derivative of the RSS versus a,, and b, in order to seek such
coefficients, variable in time, which also depend on the influ-
ence of f, , and T, parameters.

The sums having a form (4, 5) as shown in FIG. 5, after
multiplication by a 2/N coefficient, form a discrete Fourier
transform for the natural frequency w,,, for the p-th mode,
made for a finite length of the signal y,,. The coefficient 2/N
results from a property of the discrete Fourier transform and
from the equation for Fourier series coefficients.

The sets of equations (2) and (3) of FIG. 4, after multipli-
cation at both sides by 2/N may be formulated as equations (6)
and (7) shown in FIG. 5.

It can thus be confirmed that starting from the least squares
method in the time domain, a set of equations in the frequency
domain has been obtained.

The best estimations of mode shapes of vibrations are
obtained from the rules that the real part of the signal trans-
form at point f,, equals the sum of the real parts of transforms
of mode shapes of vibrations at this particular point of the
spectrum of vibrations. Similar relationships apply to the
imaginary part of the Fourier transform.

In order to diagonalize the matrix of the set of equations,
equations (7) from FIG. 5 multiplied by an imaginary unit
with a minus sign (—j) are added to equations (6) to obtain a set
of'equations (8) shown in FIG. 5, further presented in a vector
form (9), whereinY denotes a transform of the particular time
function.

The set of equations (9) may also be obtained by comparing
the signal y(t) to a sought model $(t) and by performing a
Fourier transform for the natural frequencies of successive
modes. However, such a process does not show that the set of
equations (9) results from the method of least squares of
errors.

In FIG. 6 the equation (9) for two modes is presented in a
graphic form. In FIG. 6 the transform module of the first mode
of vibrations is dominant at point f ,, and the transform
module of the second mode of vibrations is dominant at point
£,

For the data presented in FIG. 6, the minimization of the
sum of squares of errors in the time domain leads to a set of
equations in the frequency domain as shown in FIG. 7. These
are vector equations for natural frequencies f,, (the first equa-
tion) and £, , (the second equation).

The matrix of the set of equations (9) is similar to a diago-
nal matrix. The diagonal comprises words Y,,; 1, Y,,55, - - -,
Yor - The remaining words are usually significantly lower.
Therefore, in the first approximation there may be assumed
equations (10) shown in FIG. 7.

From the equations (10), the first approximation of the
sought mode shapes of vibrations may be determined.

The second approximation may involve the influence ofthe
neighboring and further modes, which were calculated in the
first approximation, on the value of transforms at individual
points f,,.

In the third approximation, all modes calculated in the
second approximation are included, etc.

The Fourier transform of an impulse response of the evalu-
ated object may be the source of information on the natural
frequencies.

The maximum values (resonance peaks) indicate the loca-
tions of natural frequencies. The influence of the neighboring
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modes on the positions of the peaks is low if the modes are
spaced apart from each other. If the vibrations of a wing of the
airplane are measured using a strain gauge circuit, which
registers only the bending, then the measured modes are
spaced apart from each other. The strain gauge circuit for
measuring the torsion of a wing also registers only torsional
modes spaced apart from each other (FIG. 8).

Acceleration sensors located e.g. on the line of junctions of
the torsional mode also register only the bending modes
spaced apart from each other. If two acceleration sensors are
located on one wing chord and equally spaced from the tor-
sional axis, then by adding their readings, the bending mode
can be eliminated, and by subtracting their readings, the tor-
sional mode can be eliminated and the bending mode can be
amplified twice.

It is, however, not possible to determine accurately the
natural frequencies that are located very closely to each other,
when the transform modulus comprises only one peak instead
of'two neighboring peaks, as shown in FIG. 8. The transform,
as shown in FIG. 8, of the time signal comprising two mode
shapes of vibrations has only a single maximum (solid line).
The existence of resonance peaks depends strongly on the
phase shift of the modes of vibrations. In FIG. 8, the modes of
vibrations have starting amplitudes A,;=15 and A,=15, the
frequencies f,,,=10.5 Hz and f,,=11.5 Hz, damping coeffi-
cients £;=0.05 and C,=0.04. ¢,=1, ¢,=0.

When recording an impulse response having an attenuation
time of about 1 s, there may appear problems with appropriate
determination of two modes separated by less than 1 Hz. By
employing the aforementioned measurement methods, it is
possible to prevent such problems in practice. The frequen-
cies determined in the first approximation from the set of
equations (10) are corrected in successive iterations including
the influence of neighboring modes on the location of reso-
nance peaks.

For natural frequencies determined this way, damping
coefficients may be calculated by using the known methods,
for example by using Fourier transform as presented in the
following publication: Lenort F. “Application of Fourier
Transformation to Flutter Tests”, Journal of Theoretical and
Applied Mechanics, No. 4/94, Warszawa 1994. A known
impulse response of an object allows determining the prelimi-
nary values of f,, and , of successive modes of vibrations
present in the evaluated signal.

Determination of Phase

The calculated frequencies f,,, of the natural vibrations
serve as the preliminary information on the actual modes of
vibrations. Based on the ground vibration tests (GVT), the
individual frequencies f,,, can be associated with particular
modes of vibrations: the first bending, the second bending,
the first torsional, etc.

For a detailed evaluation, having several sensors located on
a wing, with two sensors per selected wing chords, by using
Fourier transforms, the phases of movement of the selected
construction points may be determined for individual modes
of vibrations at a particular moment in time.

In the mathematical model as shown in FIG. 3, the values
¢,, may be used to determine the modes of vibrations. If in the
starting point of the analysis window, the angles ¢ from two
sensors located on a single wing chord have the same value, it
means that they are in phase and the movement of that given
frequency is a bending movement. If the phases ¢ differ by
180°, then the analyzed movement is a torsional movement.

Determination of the value ¢, is required for full identifi-
cation of the parameters of the mathematical model. Fourier
transform can be used to determine the value ¢,,.
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FIG. 9 presents a sequence of transformations of signal y(t)
to obtain the equation for phase ¢, from which it can be
derived that by having calculated the real and imaginary part
of Fourier transform for a given natural frequency w,,, the
phase ¢ of the function y(t) can be determined at the starting
point of the analysis window.

When the function y(t) represents a damped sinusoidal, the
equation for determining the phase ¢ is burdened with a
certain error. However, the error may be removed by knowing
in advance the damping coefficient C. A function in the form
presented in FIG. 10 may be, before calculating the value ¢,
multiplied by the function exp(At), in order to remove the
exponential factor in the function y(t).

The phase ¢ of a single mode shape of vibrations may be
therefore calculated accurately. In the case of multiple modes,
the result is burdened with an error of the influence of the
neighboring modes. This influence may be removed in sub-
sequent iterations by removing from the signal the neighbor-
ing modes, calculated in the previous iteration.
Determination of Amplitude

After the values f,,, T and ¢ are successively calculated for
the analyzed mode, for the case of a function with a single
isolated mode, the amplitude A may be accurately calculated
for the starting point of the analysis window, as shown in FIG.
11.

By calculating the Fourier transform at point £f,, the equa-
tion for the amplitude A can be obtained, in which F denotes
a simple Fourier transform.

In case the other modes influence the result of calculation,
the value A calculated in the first approximation from the
equation of FIG. 12 is corrected in the subsequent approxi-
mations by removing the remaining modes calculated in the
previous approximation.

Determination of Flutter Vibrations

The use of the method of the least squares of errors in the
time domain leads to a set of equations in the frequency
domain. The individual equations of that set of equations
correspond to Fourier transform properties at successive
pointsf ., f .. ..., T . Atthese points, the transform of the
signal y(t) is a vector sum of transforms of mode shapes of
vibrations. In these sums, the mode having the frequency
matching the successive values of f, plays a dominant role.

Therefore, as the first approximation it can be assumed that
the modes are appropriately isolated and their parameters can
be calculated independently from the other modes.

For such isolated modes, precise formulas for determining
the individual parameters: f,, T, ¢ and A may be compiled.
The sequence of calculating these parameters should not be
random. The parameters shall be calculated exactly in this
order: f,, must be known to calculate T; f,, and T must be
known to calculate ¢; and, f,,, T and ¢ must be known in order
to calculate the amplitude A.

Before calculating the parameters of the second mode of
vibrations in the first approximation, the calculated first mode
may be removed from the signal (subtracted) in order to
remove its influence on the neighboring resonance peaks. The
second mode, having been calculated, may also be removed
from the signal before calculating the third mode, etc.

In the second approximation, before calculating the first
mode, all remaining modes calculated in the first approxima-
tion are removed from the signal in order to avoid their influ-
ence on the calculated first mode. After the first mode in the
second approximation is calculated, it is removed from the
source signal and the third and further modes obtained from
the first approximation are removed as well. Thereafter, the
second mode is calculated in the second approximation.
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The above rules are maintained in further approximations.
After the successive mode is removed, the rest sum of squares
(RSS) is calculated in the next approximation. The value of
RSS is used for evaluating the relevance of individual modes
of vibrations.

For actual signals, the appropriate way to calculate a mode
is to start from the mode having the lowest value of f,,
because of its highest contribution to the total variability.

The modes of vibrations to be classified as relevant are the
modes that, when subtracted from the vibrations signal, result
in a decrease of the rest sum of squares (RSS) by a value not
lower than a threshold coefficient, for example 5%.

For typical, model impulse responses, the calculation
results are correct. The accuracy of calculations depends on
the sampling frequency of the time signal and on the signal
length (on the time of attenuation of the signal). The calcula-
tions time is lower than one second.

A Method for Calculating Estimate of Autocorrelation

Vibrations signals may be analyzed directly or by analysis
of their autocorrelation function.

The method according to the present invention utilizes
calculation of estimate of autocorrelation based on finite seg-
ments of vibrations, which preserves the values of the damp-
ing coefficients of the vibrations signal and is suitable for
non-stationary signals. In addition to stationary signals, there
may be freely decaying signals or increasing signals. It is a
tool suitable for the so-called time-frequency analysis, for
assessment of the momentary properties of non-stationary
signals.

A new estimate of the self correlation function has been
employed in the method according to invention, which elimi-
nates the methodological errors of evaluation of the damping
coefficients known from the estimates used so far.

The new estimate is based on the fact that, with a measured
and sampled segment of vibrations, the first N/2 samples are
collected and shifted along the whole segment. After each
shift by one sample, the values of samples accruing on each
other are multiplied and the 1 to N/2 products are summed.
The obtained sum is divided by N/2.

For a zero shift, the first point of the estimate of autocor-
relation R, (0) is obtained. The points of the shifted segment
having the size of N/2 have been located exactly over the first
half of the complete segment.

The last point of the proposed estimate is obtained when
the shifted segment is located exactly over the second half of
the complete segment of vibrations (R, (N/2)).

For avector of vibrations signal having the size of N points,
there are obtained N/2+1 points of estimate of autocorrelation
function (when N is even).

Taking into account the properties of a given signal, the
length of the shifted segment may be increased. In such a
case, a shorter segment of autocorrelation function is
obtained. In turn, by decreasing the length of the segment
which is shifted, the length of the obtained autocorrelation
function is increased.

If a Fast Fourier Transform (FFT) is used for calculating
the autocorrelation function, then N shall fulfill the require-
ment of N=2" where m is a natural number.

The proposed estimate of the self-correlation function may
be formulated in the form of a sum with the use ofthe equation
(12) shown in FIG. 15.

The proposed estimate of the self-correlation function may
be formulated in the form of an integral with the use of the
equation (13) shown in FIG. 16.

An example of rules for calculating a self-correlation func-
tion for a function y(t)=exp(-At) is shown in FIG. 13A. The
solid line denotes the function y(t). The dashed line denotes
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the first half of the signal y(t), shifted along the time axis. The
first point of the autocorrelation function is obtained for =0,
and the last for ==T.

In turn, in FIG. 13B there is shown an exemplary set of
rules for calculating the self-correlation function for the func-
tion y(t)=exp(-At), with the use of Fast Fourier Transform
(FFT). The solid line denotes a periodic function y(t) having
period 2T and the dashed line denotes a periodic function y(t)
from 0 to T filled with zeros from T to 2T.

Proving that the New Method for Calculating Autocorrelation
Estimate is Appropriate

For the prior art methods used for infinitely long vibrations
signal, it has been shown that the self-correlation function
may replace the unknown function of impulse response of the
evaluated object.

When proving that a self-correlation function may replace
the unknown function of impulse response of the evaluated
object, it was necessary to calculate an infinite integral (from
0 to +o0) of a product of two impulse responses. The result of
this action was an impulse response preserving the natural
modal values (frequency and damping coefficient).

The proposed integral estimator (equation 3) also pre-
serves the natural values (frequency and damping coeffi-
cient), even based on a finite vibrations signal, which will be
proved below.

An impulse response may be assumed in the form of equa-
tion (14) shown in FIG. 17. The further calculations are
shown in F1G. 18. Integral equations are shown in F1IG. 19 and
their use for calculation of the function is shown in FIG. 20.

The analytical equation for the self-correlation function
can be also written in the form (15) as shown in FIG. 21.

Formally, time in equation (15) can be denoted as “t
instead of “t”. It can be readily seen that the estimate of the
autocorrelation function R, ;{T) as calculated according to
the proposed method, is a freely decaying signal having the
same damping frequency coefficient T and the same natural
frequency value w, as the processed signal y(t).

The constant coefficient A has been replaced with a con-
stant C, and the phase $=0 at the beginning of the signal has
been replaced according to equation (16): for a non-attenu-
ated signal, when £=0, the phase of such sinusoid equals 7/2
rad. The non-attenuated sinusoid is replaced with a non-
attenuated cosinusoid, as follows from the theory.

It should be noted that a correct result has been obtained,
i.e. the preservation of natural properties for a finite impulse
response signal: for a non-stationary signal.

The equation (16) defines that the starting phase of the
self-correlation function is unambiguously dependent on the
damping coefficient. For a fading signal y(t), the autocorre-
lation signal starts with its maximum value. For example, for
£=0.015, the autocorrelation function expressed as a sine
function starts with an initial phase of $=1.5558 rad. For an
increasing y(t) signal, its autocorrelation function does not
start with its maximum (the function is also an increasing
function). For example, for £=-0.015 the initial phase is
¢=1.5858 rad. The attenuated sinusoid of the initial phase =0
has its first maximum for a phase ¢=arc cos C. The further
maxima fall at points ¢p+n-2m, n=1,2,3, ....

Referring back to the obtained analytical equation for the
self-correlation function (15), in FIG. 14 there is shown an
exemplary plot of a fading signal according to the equation
(14), denoted with a solid line and its self correlation function,
denoted with a dashed line, for A=1, £=0.015 and f ~f,=10.6
Hz.

For T=1 s, the autocorrelation function (the dashed line) is
calculated only in the range of O=t<T/2. The value of the
damping coefficient € and the frequency f of the autocorre-
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lation signal are the same as for the signal y(t). There has been
a change in the amplitude and the initial phase.

Analysis of the equation (14) leads to a conclusion that for
=0 and A=2 the amplitude of the autocorrelation function
remains the same: C=2. In general, for amplitudes A greater
than 2, the amplitudes are increased, in line with equation
(15), and amplitudes lower than 2 are decreased. This is an
advantageous feature of the autocorrelation function, as it
eases decomposition of the assumed impulse response signal
or other freely decaying signals and vibrations signals during
normal operation of an airplane in flight. The white noise is
practically fully removed, the autocorrelation function is
smoother than the source vibrations signal.

It will be shown below how to utilize the proposed method
for calculating the self-correlation function for a fading signal
having infinite length when T—+co.

An integral has to be considered according to the equation
(17) shown in FIG. 22, wherein y(t) is a signal according to
the equation (14).

The calculation results are shown in FIG. 23.

As can be seen, the proposed method for calculating the
self correlation function transforms an infinite exponentially
fading signal into an infinite signal of the same frequency and
of the same damping coefficient.

Assuming the same signal according to the equation (14),
defined in a finite range 0 6t 3T, and calculating with the use
of the current “unbiased” estimator of the autocorrelation
function (1), i.e. calculating an integral according to the equa-
tion (18) in FIG. 24, leads to a result in a form shown in FIG.
25.

A time plot for values according to the equation (19) in
FIG. 25 is shown in FIG. 26—the curve C matches the curve
B according to the equation shown in FIG. 19.

In this example, the estimator of the self-correlation func-
tion is the function resulting from multiplication of a expo-
nentially fading sinusoid and an increasing function C, which
in this example decreases the speed of fading of the sinusoid
and changes its nature of variation in time—it is not purely
exponential fading.

FIG. 27 shows a plot of a signal y(t) according to the
equation (14) (solid line) and a plot of its self-correlation
function R, ;.. (dashed line) for T=1 s. As can be seen, the
autocorrelation function fades more slowly than the signal
y(t), and has a lower damping coefficient.

The integrals C12 and C2 have been solved above for a case
which significantly simplifies the form of the result, i.e. for a
case where T=k-T_, . This simplification did not, however,
introduce visible errors in calculation shown in FIG. 26. In
this particular example, the numerical results differ only by
the fourth most significant digit.

In order to simplify the formulas and increase their clarity,
there have been assumed notations A and w as shown in FIG.
28, as well as an equation for an integral C, |, also shown in
FIG. 28. The integral C,, has a crucial meaning in the ana-
Iytical form of the autocorrelation function. Formulating the
equation for integral C,, is shown in the further part of FIG.
28. Inthe integral C, ,, the value under the root in the denomi-
nator is so high in comparison to the values in the nominator,
that the integral C , is negligible in comparison to the integral
C,, for typical measurement data.

The form of integral C,, shown in the subsequent part of
FIG. 28 for any value of T, is also negligibly small in com-
parison to integral C, ;.

By inserting the values of the integrals to the equation for
the value of the self-correlation function, the equation shown
in FIG. 19 is obtained. By inserting to this equation the
corresponding equations for C,,, C,, and C,, an equation for
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assessment of amplitude B is obtained. It can be examined
whether the amplitude B is independent of the shift ©, or
whether it depends on T and how.

IfC,,, C,, and C, are substituted according to the formulas
in FIG. 28, where the upper integration limit is constant and
equals T, as it is proposed in the method for autocorrelation
function calculation, then all the formulas are constant values,
independent of T and the amplitude B is constant. In the
resulting autocorrelation function, the vibrations damping
coefficient T is preserved.

If in the formulas C,,, C,, and C, there is substituted, in
place of the constant T, a variable integration limit T-t, as in
the classic method for calculating autocorrelation function,
then the amplitude B is a value dependent on the shift t. FIG.
26 shows, for exemplary purposes, the amplitude B as a
function of the shift t for given values A, f and C.

For an infinite analytical signal (FIG. 22), a self-correlation
function in the form shown in FIG. 30 can be obtained.

The expression (19) defines a constant value and therefore
the calculated self-correlation function preserves the damp-
ing coefficient of the analyzed signal y(t).

Requirements with Respect to Evaluation of Vibrations
Damping Coefficients

Aviation regulations require that for the in-flight airplane
structure vibrations, the damping coefficients  for modes of
vibrations that are relevant for flutter, should be greater than
0.015.

As it is known, physically the coefficient T is unambigu-
ously related to the decrease in amplitudes of impulse
response, to the decrease in freely decaying vibrations,
according to the equation in FIG. 31. This shows that the
regulation requirements may be formulated as follows: each
excited and then freely decaying vibrations, of an airplane
structure in flight, should fade with a decrease in amplitude by
about 10% during a single vibrations period.

For the coefficient value of £=0.707, each deviation of the
setup from a balance point results in a slow return to the
balance point, without vibrations. Such a value of vibrations
damping may be assumed for evaluation of relative measure-
ment error of damping coefficient.

The measurement of the value of £=0.015+0.005 means
that a relative measurement error is 0.7%. The value of the
damping coefficient C is also given in %. The measurement
result C=(1.5+0.7)% means a measurement with a relative
error of 1%.

It is usually required to have, in a segment of analyzed
vibrations, at least 10 vibrations periods having a top evalu-
ated frequency f,, and to have in the bottom range of the
vibrations f, at least 20 samples of the evaluated signal in a
single vibrations period. Therefore, if the band of vibrations
of interest is for example from =5 Hz to £,=50 Hz, then the
analysis should include at least 2000 samples, the sampling
frequency f,, should be 1000 samples per second and the
segment of analyzed vibrations should have a length of 2 s.
Generally, the number of samples should amount to
N=200*{/T,. These requirements allow calculating the auto-
correlation function with an error of about 2%.
Assumptions and Rules During Flutter Assessment in Flight

The use of correlation function belongs to a group of meth-
ods based on passive experiment, i.e. based on passive obser-
vation of object outputs without compromising the natural
circumstances of object operation.

In this method, it is assumed that the object under test is
linear and has constant coefficients, invariable in time. It is
assumed that the input signals and interferences are station-
ary, ergodic and stochastic processes.
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Stationary processes are stochastic processes that have a
constant, expected value independent with regard to time,
constant time variation and a self-correlation function inde-
pendent with regard to time and dependent only on the shift T.

In the case of airplane vibrations, the linearity of the object,
i.e. invariability of the damping coefficient and the natural
vibrations frequency, is not fully accomplished.

The natural frequencies of wings in flight change along
with the amount of fuel in integral or underwing fuel tanks. In
training airplanes, the change amounts to approximately
10%. Initially, the frequencies are lower and in the end higher,
according to the change in weight.

In such a case, the advised long-lasting measurement does
not make any sense. This would lead to averaging the actual
values of, for example, 11 Hz at the beginning of the flight and
12 Hz at the end of the flight, to the value of 11.5 Hz.

Therefore, it would be advantageous to provide such meth-
ods for identification that allow appropriate evaluation of
damping and frequency for short segments of vibrations sig-
nals. This is the aim of the work presented herein. This
requirement is also advantageous for the industry, where real-
time in-flight assessment of freedom from flutter of an air-
plane is needed.

In practice, it is possible to use a method which is based on
momentary analysis of short segments of a signal and which
further involves calculation of an exponential average. Such
an average decreases the weight of previous measurements
results, as shown in the equation in FIG. 32. The higher the
value of M is, the higher the weight of the older measurements
is—and, consequently, the level of “forgetting” older mea-
surements is lower.

For a complete assessment, it is advantageous to store in a
computer memory all source calculations, without calculat-
ing averages, and visualization in flight of the values averaged
linearly and exponentially.

The values averaged linearly show what is the average
value from the start of the measurement, up to the present
moment. They present a possible increase or decrease in
damping with a significant delay.

Therefore, in flutter tests the exponential average is pre-
ferred because it quickly presents the possible decrease in
damping, which should be a warning for the airplane crew.

The same concerns the rules of registration and visualiza-
tion of the natural (structural) frequencies or harmonic vibra-
tions, which are excited for example by propellers.

If natural vibrations of an airplane structure are tested in
flight, then the measurements should be made with a constant
velocity and altitude.

The increase in flight velocity during measurements is
usually related to increase in the level of vibrations, which can
lower the actual damping coefficients. On the other hand, the
measurement of vibrations during constant decrease in flight
velocity may lead to a decrease in actual values of damping
coefficients.

In practice, the test flights are made for several different
altitudes and with gradually increasing, predetermined flight
velocities, to cover the whole range of altitudes and flight
velocities envisaged for the airplane under test, with a certain
overhead for ensuring safety during normal operation.
Speeding Up the Calculations with the Aid of the Fourier
Transform

During in-flight tests of an airplane, the following need to
be calculated based on data from several dozens of vibrations
sensors: vibrations amplitudes, damping coefficients of rel-
evant modes of vibrations, phase shifts between individual
points on the airplane. Moreover, the modes of vibrations
relevant for flutter should be visualized. The relevancy of the
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calculated parameters should be assessed and certain tasks
should be executed, such as data acquisition, calculations and
analyses. These calculations require thousands of Fourier
transformations, for example per second, if such a delay is
allowable for calculations performed in real time.

During flutter tests, the modal modes of vibrations should
not be presented. The modes of flutter vibrations are usually
modes comprising two or three modal modes of vibrations,
for example bending-torsional forms of vibrations or tor-
sional vibrations of tail-plane connected with bending of the
rear part of the fuselage and with a phase shifted movement of
the elevator of the same frequency.

Therefore, itis more important to track the so-called opera-
tional modes of vibrations, i.e. the visualization of modes of
vibrations at such points of the vibrations spectrum where the
amplitudes are maximal. It can be then seen whether these are
dangerous vibrations of a flutter character or only vibrations
strongly excited by air turbulence, for example bending forms
of vibrations of wings.

An adequate speed of calculations may be achieved by
calculating a Fast Fourier Transform. For example, the self-
correlation function R, (k) to realize the stochastic process
y(n) may be calculated using the equation (20) shown in FI1G.
33.

In this example, the reverse transform is calculated for a
product of Y(j) transform and the conjugated transform YP*
(j) calculated for a half-pulse signal yp(n).

The calculation of the autocorrelation function using this
method is, for N=1024, two times faster and, for N=2048—
four times faster.

Increasing the Resolution of Calculations

FIG. 34 shows a frequently used equation for calculating a
discrete Fourier transform. If the sampled segment of a vibra-
tions signal is denoted as T=N-At, wherein At is the sampling
period of the signal y(t), then the resolution of the resulting
discrete spectrum in Hz is Af=1/T. In order to achieve high
resolution, i.e. low Af values, long vibrations segments are
necessary. However, long vibrations segments delay obtain-
ing the analysis results.

In order to increase the resolution of the spectrum of vibra-
tions, the samples of a signal may be subject to zero padding.
The high frequencies range depends on signal sampling fre-
quency and will not thus be changed.

If the modified transform will be used only to search the
local spectrum maxima (resonance peaks), then zero padding
may be increased. Zero padding has been verified in practice
for N samples with N, 3N, 7N and 15N zeros. Such zero
padding meets the requirement for N_, =2’ where N=2' and
=1,2,3,....

By means of this method, after acquisition of the samples
of'the analyzed signal during 1 s, calculations of a transform
on a modified signal of the length of 16 s may be performed to
receive almost instantly a result of resolution Af=0.0625 Hz
instead of Af=1 Hz. However, it must be noted that a correct
result of the analysis will be obtained from frequency =1 Hz,
when N signal samples are within a single vibrations period,
as it is in the FFT calculation method.

If in the above example it is desirable to obtain vibrations
spectrum from 1 Hz to 50 Hz, then the evaluated signal may
be sampled with a frequency f,=128 samples/s. In this
example N=128, N, . =2048.

The spectrum range from 1 Hz to 50 Hz is sufficient for
flutter tests in flight for a majority of airplanes and gliders (for
gliders and large passenger airplanes: from 2 Hz to 10 Hz, for
training airplanes: from 5 Hz to 50 Hz, for military airplanes:
from 10 Hz to 60 Hz).
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Speeding Up Calculation of Fast Fourier Transform

In the present invention, a standard method for calculating
a Fast Fourier Transform has been modified to speed up the
time of computation of vibrations present in an airplane i.e.
vibrations having a frequency from several to several dozen
Hz. The modified algorithm for calculating a Fast Fourier
Transform is presented in FIG. 35.

During in-flight flutter measurements, there is frequently a
need to calculate a Fourier transform only at certain points of
the vibrations spectrum.

The new algorithm according to the invention is based on
the known algorithm of Murphy McCauley VBFFT (1999).

The main change introduced is that at the first run of the
analysis during flight, a table of values of sine and cosine
functions is calculated and these values are stored as sn(mb)
and cs(mb). During calculations of transform, the modified
algorithm fetches the prepared values from the table in the
steps defined by lines 13 and 14.

Visualization of Vibrations

FIG. 36 presents an exemplary visualization of operational
modes of vibrations obtained by the method according to the
present invention. The visualization depicts a reference place-
ment 101 of airplane structure elements with sensors 102,
marked with a solid line, and the actual, in-flight placement of
sensors 112 and deviations 111 of airplane structure elements
resulting from the actual placement, marked with a dashed
line. The visualization may be presented in color so that the
actual placements are marked with a green line when exces-
sive vibrations are not detected and with a red line when
threshold values are exceeded. This allows immediate evalu-
ation of the behavior of airplane structure elements in flight.
In the presented visualization there is visible a torsion of the
fuselage end as a result of improper balance of the rudder—a
movement of the rudder delayed in phase with respect to the
horizontal tailplane has a character of flutter vibrations with
constrained amplitude. In addition to such a visualization, for
each sensor there may be presented: vibrations frequency,
vibrations amplitude and vibrations speed amplitude. Fur-
ther, the amplitudes may be presented in comparison to the
amplitude at a reference point.

In order to obtain such visualization in flight, in real time,
i.e. in time less than one second from measurement, it is
necessary to utilize the new method of vibrations analysis.
The method according to the present invention is based on
non-linear regression analysis relying on the method of least
squares of time signals errors.

In the case of analysis of vibrations signals during normal
flight, without exciting increased vibrations with a use of
additional devices, the self-correlation function is calculated
with the method formulated for non-stationary signals with a
finite length, which does not change values of damping coef-
ficients of the measured signals.

System for Carrying Out the Method According to the Present
Invention

The method according to the present invention may be
carried out by means of a computer system shown in FIG. 37.
The system comprises signal processing circuits 201 for pro-
cessing signals from vibrations sensors 202 located on an
airplane structure. The signal processing circuits utilize, dur-
ing operation, memory 203 for storing measurements and
cache memory 204 for storing cached variables, for example
the values of sine and cosine functions to improve the speed of
calculating Fast Fourier Transform according to the algo-
rithm of FIG. 35. The signal processing circuits 201 may be
dedicated integrated circuits, optimized for performing cer-
tain calculations. The signal processing circuits 201 may also
be implemented in a typical PC-type computer with the soft-
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ware for carrying out the methods disclosed above. The sys-
tem is operated by a control interface 205, via which the
current operation of the system may be configured. The
analysis results may be presented on a monitor 206 and stored
in a results memory 207. The complete system may be
installed on board of an airplane. The system may also be
installed partly on board of an airplane and partly on the
ground, wherein signals exchanged between the on-board and
ground elements of the system may be exchanged wirelessly
by means of a link of a sufficient bandwidth.

The invention claimed is:

1. A measurement system for in-flight assessment of free-

dom from flutter of an airplane, the system comprising:
a plurality of vibration sensors located on a wing of the
airplane, with two vibration sensors per selected wing
chord, the vibration sensors for measuring finite dura-
tion non-stationary flutter vibrations signals; and
signal processing circuits for processing the finite duration
non-stationary flutter vibrations signals from the plural-
ity of vibration sensors, the signal processing circuits
configured to:
analyze airplane structure vibrations based on the finite
duration non-stationary flutter vibrations signals
measured by the vibration sensors;

perform computations of the airplane structure vibra-
tions in real-time based on current measurements
from the vibration sensors;

determine, for a plurality of mode shapes of each of the
finite duration non-stationary flutter vibrations sig-
nals, a natural frequency (f), a damping coefficient
(€), a phase (¢) and an amplitude (A) for each mode
shape by using a method of least squares of errors of
time signals based on measurements from the vibra-
tion sensors;

determine a significance of the determined mock shapes
of each of the finite duration non-stationary flutter
vibrations signals by subtracting from the finite dura-
tion non-stationary flutter vibrations signal the deter-
mined mode shapes, and calculating a value of
decrease in a residual sum of squares; and

evaluate the airplane structure vibrations by analyzing
estimates of an autocorrelation function R, (1) for
operational finite duration non-stationary flutter
vibrations signals, by computing the autocorrelation
function R (1) by multiplying a constant number of
samples ot the finite duration non-stationary flutter
vibrations signal (y,,) by successive segments of the
finite duration non-stationary flutter vibrations signal
(v,), the finite duration non-stationary flutter vibra-
tions signal having a size of N samples, and by sum-
ming results according to an equation:

N2
Ryy(l) = N_/ZZ Yn* Yntt
n=1

n=1,2,3 .. .N
[=0,1,2,... .N/2

to obtain the autocorrelation function R, (I) having a
length of a half of the evaluated segment of the finite
duration non-stationary flutter vibrations signal (y,,)
while maintaining the values of the damping coefficients
(€) of the finite duration non-stationary flutter vibrations
signals.
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2. The system of claim 1, wherein the signal processing
circuits are further configured to:

calculate the autocorrelation function R, (1) using an
inverse Fast Fourier Transform of a product Y ;,(j) of:

a Fast Fourier Transform Y(j) of a signal y(n); and

acomplex conjugate YP*(j) of a Fast Fourier Transform of
a half pulse signal yp(n) of the signal y(n), according to
the equation:

1
Ryy(k) = N—/ZFFT’I[Yyyp(j)] fork=0,1,2,3,... ,N/2-1

Yryp() = Y(DYP())
j=1,2,3,... N
Y(j) = FFT[y(n)]
YP(j) = FFT[yp(n)]

ypm)=ymn) forn=1,2,3,... ,N/2

ypm)=0forn=N/2+1,... ,N
whereinn=1,2,3 ..., N=2', Wherein i is a natural number.

3. The system of claim 2, wherein the signal processing
circuits are further configured to:

zero-pad a sampled segment of the finite duration non-

stationary flutter vibrations signal having the length of N

18

samples to obtain an output sequence having a length of
N_,,.=2', wherein i is a natural number and calculating
the Fast Fourier Transform for the output sequence.
4. The system of claim 2, wherein the signal processing
5 circuits are further configured to:
calculate the Fast Fourier Transform by using tables of
values of sine and cosine functions for angles dependent
on the number of samples and on the sampling fre-
quency.

5. The system of claim 1, wherein the signal processing
circuits are further configured to:

generate an image, for display on a display device func-

tionally associated with the signal processing circuits, to
visualize the airplane structure vibrations measured by
the vibration sensors, the image comprising an image of
the airplane structure and deviations of the airplane
structure resulting from the airplane structure vibra-
tions; and

mark the deviations having parameters above threshold

values with a color different than a color of the devia-
tions having parameters below threshold values.

6. The system of claim 5, wherein the airplane structure
vibrations are visualized by the signal processing circuits
calculating a phase shift or a movement phase at specified
points in time.
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